
Realistic Computer Simulations
Based on Visual and Force Feedback

Juan Manuel IBARRA ZANNATHA1, Claudia MARMOLEJO RIVAS1,2

1Departamento de Control Automático, CINVESTAV
2Escuela de Informática de la Universidad Autónoma de Sinaloa

{jibarra ,cmarmolejo}@ctrl.cinvestav.mx

Abstract
 In addition to surgical applications and Robotics,
the haptic interfaces are used in scientific visualization, in
training, to assist visually impaired people, and to built
realistic simulation systems. The computer simulation
based on virtual reality should calculate the inputs to the
physical haptic interface, which depends on both
simulation modeling and control algorithms. Moreover,
they rely entirely on real-time computer input. Then, the
haptic rendering to be used in control of the haptic
interface needs the real time solution of the models
representing the complete dynamical behavior of the
simulated system. The main issues in the haptics domain
are control of mechanical devices using force feedback;
creation of realistic virtual worlds, production of realistic
kinesthetic and tactile feels; teleoperation and
telepresence together with data compression; and the
construction of haptic devices The contents of this
document have a general interest in the wide world of
realistic simulations, but is more detailed in the aspects
touching robotic application and the case with point
contact obtained, by example, with the Phantom system,
with emphasis in the haptic rendering aspects.

1. Introduction
 Computer simulation is a powerful tool, very
useful to understand or to control all kinds of natural
phenomena or human designed systems. The objectives of
computer simulation include the understanding of the
simulated systems, the design of their components, the
control of their behavior or the performance optimization
of those systems. Dynamic behavior of natural or man
made systems, kinematics of moving mechanisms,
geometrical and topological properties of objects and the
relationships between them, are some of the phenomena
that we are interested in to simulate.

 At its early stages, computer simulation gave
only a listing with values of the variables of interest. The
graphical representation of the simulation results was a
big progress. But nowadays, Computer Science provides a
wide variety of methods to display the results of
simulations, including sophisticated 3D interactive virtual

worlds, together with sound feedback. But there are some
applications where this kind of feedback is not enough to
evaluate the simulation results. In surgical training
systems or in programming robot’s tasks concerning
contact with its environment, we need to involve more
than the sense of vision, to have more realistic immersion
systems. It is our sense of touch that provides us with
much of the information necessary to interact with our
environment. It involves information about physical
properties such as inertia, friction, compliance, roughness,
and temperature. We use the term haptic to evoke the
sense of touch or something related to this sense [8].
Then, a physically accurate simulation joining all kinds of
sensorial information, like vision, sound, and touch, let us
obtain insight into the real-world behavior of the dynamic
system under study, and enhance the level of immersion in
a virtual world.

 Haptics can be divided into two categories. First,
the kinesthetic sense, based on force feedback, through
which we sense movement or forces in muscles and joints
corresponding to the weight of the grasped virtual objects,
their mechanical compliance, inertia, as well as motion
constraints. Secondly, the tactile sense that allows human
operator to feel the roughness of virtual surfaces
(textures), their edges (shapes), and their temperature.

 In this frame, we need a touch interface, known
as haptic interface, to reproduce kinesthetic and tactile
senses corresponding to the interaction of the user with the
objects living in virtual worlds. Haptic interface is a force-
reflecting mechanical device used to apply forces to a
human operator, typically through his finger or hand,
creating the illusion of physical contact with a real
physical environment. The main goal of the haptic
interface is to command the movements of the objects in a
virtual environment, displaying to the user the
corresponding interaction forces, together with the 3D
visualization of the corresponding virtual environment.
Then, the use of haptic interfaces allows very realistic
virtual reality (VR) simulations.

 This document intends to be a survey on the
primary issues in Haptics, starting with the presentation of
the main kind of haptic devices used in the area of force
feedback simulations or teleoperation, and some
interesting points about the control of mechanical devices

to produce force feedback. The aspects about the haptic
rendering problem, together with the dedicated to haptic
devices, are the subject of one of the most detailed
chapters, including: physical modeling (kinematical and
dynamical models), collision detection, grasping, object
deformations and generation of the interaction forces.

2. Haptic Devices
 Haptic mechanical interfaces and its supporting
software are alternative or supplementary input devices to
the mouse, keyboard, or joystick, that allow us to feel and
manipulate objects laying in virtual worlds in a very
realistic way considering the shape, texture, weight,
stiffness, and temperature of that objects. Haptic devices
are capable, through its actuators, to deliver some forces
to the user proportionally to his interaction with the virtual
world. In this sense, haptic interfaces have a bi-directional
energy exchange between the user and the computer (see
figure 1), unlike devices used exclusively as input (mouse,
keyboard) or output (visual and sound feedback).

 When the user changes the position of the haptic
interface, or applies forces, data are transmitted to the
computer at very high rates. Once captured, the data are
processed running specialized haptic programs (graphic
rendering, collision detection, haptic rendering, etc.) wich
refresh the manipulated virtual world. In response to the
changes in the virtual world, the computer sends, to the
haptic interface, the corresponding positions and forces to
be felt by the human operator.

 In Computer Graphics and image processing
applications, low scene refresh rates of 20 to 30
frames/sec are enough to satisfy the human sensorial
requirements . In contrast, the response of our sense of
touch is better to vibrations of 200 to 300 Hz or higher.
The difference between haptics and vision bandwidths is
one order-of-magnitude, motivating the use of a dedicated
controller for the haptic interface to guarantee not only
high fidelity force feedback, but also dynamic stability.

 Taxonomy of haptic devices is not an easy task.
We can classify them depending on the type of feedback
used, their grounding arrangement, the type of actuators
used, or the application area. Here, we are interested in
general-purpose haptic devices, as opposed to those
developed for a specialized application, such as surgical
training. Most of the actual haptic interfaces use electrical
actuators, especially DC motors, because of their ease of
installation, control and cleanliness, with pneumatic and
hydraulic actuators being less common. Depending on the
type of feedback used, the haptic interfaces can be tactile
or kinesthetic. Haptic devices producing force feedback
(kinesthetic type), as opposed to devices with tactile
feedback, can actively prevent a user from moving into
restricted simulation space. However, this kind of haptic
devices lacks the rich contact surface information

produced by tactile feedback. High bandwidth haptic
interfaces combining tactile and force feedback, such as
the PHANToM arm, are best suited to fulfill the
requirements of realistic VR simulations.

 To produce some forces to the user, the haptic
device needs a fixed mechanical reference. The haptic
interfaces must be attached (grounded) to an immovable
support to be able to apply forces to the human operator
and to resist the actions of the user, even stopping him
through large feedback forces. The immovable support
provides also equilibrium and mechanical stability of the
haptic device. Then, there are two kinds of haptic devices,
depending on the grounding arrangement: those with
reference in the user’s body and devices with reference in
a desk, in a wall, etc. Exoskeletons and gloves are devices
of the first type, while most of the haptic devices from the
second group are little desk-grounded articulated
mechanisms, even if, in this group, there are also 6 dof
(degree of freedom) robots, haptic joysticks, and a special
kind of force feedback mice.

Figure 1. Haptic Interface viewed as a two -port System.

2.1. Desktop haptic devices
 The taxonomy adopted in this document takes
into account the type of attachment used by the haptic
mechanical interfaces, but there are some other criteria to
classify these devices. We can consider, for example, the
kind of energy used as criteria, to distinguish between
pneumatic, hydraulic or electric force feedback devices.
Haptic devices can be classified also following the type of
control or communication loop; we can have thus position
control based or force control based haptic devices, and
hybrid systems based on both position and force control.

 Desk-grounded haptic devices are, in fact, small
robot arms with at least three joints; DC motors actuate on
each of them. A computer controls the haptic device to
emulate the sense of touch producing a force proportional
to the reaction exerted by the virtual environment, sending
voltages to the motors when a collision between the tip of
the haptic device and virtual objects is detected, to
materialize the reaction force.

 Joysticks. For many years, joysticks have been
used in entertainment, computer graphics and industrial
control applications. New versions of this input device
include DC actuators to produce active forces to be felt by
user, but they need more than the classical 2 DOF to exert a
realistic feedback forces on the user’s hand. The force
feedback joysticks can have the classical spherical

vh vv

Fh

Human
operator

Fv

Haptic
Interface

Simulator
virtual world

configuration with an extra rotational DOF or a Cartesian
configuration with a third rotational DOF. The joystick can
have also the Stewart Platform configuration with 6 DOF.
The parallel cinematic structure of the Stewart Platform
has better position accuracy, higher load capacity, and can
exert big efforts than serial configurations like 3 DOF arms
or joysticks. Its smaller work volume, the difficult force
control and its complex direct kinematics are some of the
Stewart Platform drawbacks.

 The PHANT oM. Produced by SensAble
Technologies in Cambridge, MA, USA, the PHANToMTM
is a small pen-based desk-grounded robot that permits VR
simulation of single fingertip contact with virtual objects
through a thimble or stylus. This is a weight
counterbalanced and back drivable arm whose workspace
is those of the user’s wrist. It tracks the position and
orientation of the virtual probe as it moves about the 3D
workspace, and its actuators produces forces back to the
user’s fingertip as it detects collisions with objects in the
virtual world. The haptic feedback of the PHANToMTM arm
is ext remely crisp, due to its low inertia and static friction
combined with its very high control bandwidth (1,000
Hz). This kind of desktop haptic device can reproduce
both the kinesthetic sense (force feedback) and some
features of the tactile sense. [11].

 The FEELItTM Mouse. This device, produced by
Immersion Corporation in San Jose, CA, USA, is an
example of a desktop tactile feedback interface. It is a 2
DOF mouse used to feel the roughness of the virtual object
when the associated arrow is traversing one of its virtual
surfaces in the screen. It is possible also to push with the
arrow into virtual objects to determine their elasticity.

2.2. Wearable haptic devices
 CyberTouchTM. Wearable interfaces are haptic
devices grounded to the user’s body that has the
workspace of the user’s arm, giving him a larger work
volume than desktop haptic devices do. These devices are,
in fact, gloves that allow users to interact with virtual

worlds in a dexterous way through natural hand gestures.
An example of a tactile feedback glove is the
CyberGloveTM, used by the CyberTouchTM and the
CyberGraspTM devices, where 18 sensors measure the
hand position. In the CyberTouchTM produced by Virtual
Technologies, Palo Alto, CA, USA, the feedback is
produced by six small vibro-tactile actuators, placed on
the back of each finger and in the palm, vibrating at
frequencies of up to 125 Hz.

 The CyberGraspTM. This device from Immersion
Corporation, is a 22 DOF exoskeleton that fits over a
CyberGloveTM, providing force feedback. In this device,
the vibro-tactile actuators are replaced by a complex
exoskeleton on the back of the user’s hand formed by
tendons transmitting forces produced by DC motors
placed in a control box. These tendons can produce a
continuous force of 12 N on each finger when the user is
closing his hand. In some models an external device, like
Polhemus Fastrak, measures the position and the
orientation of the glove in the 3D space.

 Desktop interfaces have a very limited
workspace but can exert more important forces than
wearable devices. Desktop devices are more ease to use
and the relationship between compactness and force
capabilities is better than in wearable devices. Gloves and
exoskeletons have a large weight, and have important
difficulties to generate forces corresponding to the virtual
objects weight. Nevertheless, each kind of haptic device
has its own application area.

 Haptic Interfaces are articulated arms with a
certain number of DOF formed by linkages and motion
transmissions, where each joint is equipped with an
encoder measuring its angular position, and a DC motor
with its servo amplifier and D/A converter moving that
joint. Different kinds of haptic device have the same
electromechanical structure; in figure 2 is depicted a
scheme of a general haptic interface.

Figure 2. Scheme of a Haptic Interfaces from control viewpoint.

Interface tool
Linkages/

Transmissions

Encoders

x q q

τ F Current

Desired torques

Sensed Angles

Positions

Forces

Human
operator

Haptic Interfaces

Servo
Amplifiers

Motors
Simulator

(virtual world)

3. Force Feedback
 The objective of the haptic interfaces is to
produce the force feedback materializing the sense of
touch, it allows a person to feel the weigh of virtual
objects, or the resistance to motion that they create. Force
and velocity are the key variables that define the nature of
haptic contact. The goal of control law design for haptic
displays is to provide a safe and stable user interface while
maximizing the operator’s sense of kinesthetic immersion
in a virtual environment, it must provide realistic sense of
touch taking into account two main requirements: high
fidelity rendering and stability. But these two objectives
are opposite in the sense that high fidelity haptic rendering
need high force feedback gains generally producing self-
induced oscillations and instability.

There are two classes of control schemes
available for force reflection: impedance control and
admittance control. Impedance controlled systems detect
the motion commanded by the operator and control the
force applied by the haptic device as in figure 1.
Admittance controlled systems detect the force
commanded by the operator and control the velocity or
displacement of the haptic device [3]. Impedance
controllers were generally used when the environment
being simulated was highly compliant, such as human
tissue in surgical simulators. Admittance control was
generally used when the environment was unyielding such
as flight simulator p lataforms [4].

 The haptic interface can be considered like a
two-port system terminated on one side by the user and by
the virtual world on the other side. In that scheme,
inspired on electrical networks [1], a force Fh and a
velocity vh characterize the energy exchange between the
user and the haptic interface, whereas a force Fv and a
velocity vv represent the exchange between the interface
and the virtual world. To have an ideal behavior, from the
haptic rendering point of view, the haptic interface should
be transparent (Fh=Fv and vh=vv, in figure 1); but haptic
system requirements, from the stability point of view,
demands to introduce some haptic distortion.

 The interaction between the user and the virtual
world is a bi-directional transfer of energy, since force
multiplied by position represents mechanical work.
According with Hannaford, B. et al. [7], the two port
network with initial energy storage at t=0 of E(0), is
passive if, and only if:

0)0())()()()((
0

≥++∫ Edvfvf
t

vvhh τττττ 0≥∀t

the energy applied to a passive network must exceed
–E(0) at all times, which means that the system dissipates
energy, otherwise it is active because it generates energy.

Active ports may contribute to inestability. The behavior
of the user interacting with haptic interfaces is passive,
because he does not introduce energy into the system [9].
Moreover, most mechanical virtual worlds are also
passive, then, the stability of the overall system is
guaranteed when the haptic interface is designed to be also
passive. However, the sampling process perturbs the
natural passivity of the virtual environment. In fact, it was
shown that the smaller the sampling rate, the more energy
can be generated by a virtual wall [5].

 Adams et al [1] use a Passivity Observer (PO)
and a Passivity Controller (PC) for reducing the
performance compromise required for stable contact
applied to haptics and bilateral teleoperations. When there
are multiple interconnected elements, they observe each
one separately in order to determine which ones are active
and which are passive. The PO may or may not be
negative for any one port element in the system at a
particular time, but if it is negative, then the port may be
contributing to instability, as they know the exact amount
of energy generated, a time varying element, called a
Passivity Controller, is designed in order to dissipate only
the required amount of energy.

 The basic haptic interface simulation consists of
the human operator (HO), the haptic interface (HI), the
passivity controller (PC) and the virtual environment (VE)
as shown in figure 3 [1].

Figure 3. Haptic Interface viewed as a several port System.

3.1. State of the art in control of haptics
 In any kind of application, virtual worlds of
interest are always nonlinear and the dynamic properties
of a human operator are always involved. These factors
make it difficult to analyze haptic systems in terms of
known parameters and linear control the ory. The rapid
growth of haptics makes control engineering more
important. The objective of the control is to ensure the
stability of the haptic system (including the haptic device,
the corresponding software and even the human operator)
creating a compelling sense of haptic presence.

4. Haptic Rendering
 In the context of a dynamical system simulated in
a computer like an interactive virtual environment, a
human operator should be able to manipulate objects
living in a corresponding virtual world sensing both a 3-D
visualization and the interaction forces between h is hand

Fh

H
O

Fv

H
I

V
E

HC vh vv vc vb PC

Fc Fb
-

+

+
+ mg

+
+

Figure 4. Virtual simulator should produce both visual display and haptic rendering.

and the manipulated virtual objects. Here, we call Haptic
Rendering the display of the acting forces between user
and the virtual environment through a motorized haptic
device, used to manipulate the virtual objects, permitting
the user to feel those forces.

 A computer simulator capable to produce visual
and force feedback is a complex system based on the real
time evaluation of geometrical, kinematical and dynamical
models (See figure 4). Geometrical and kinematical
models are used not only to display the corresponding 3D
virtual environments but also to detect the interaction
between user and virtual objects living in this environment
(collisions) and to calculate the geometric restrictions of
virtual objects, including the user’s probe. In the
simulator, dynamical models are used to calculate the
movement behavior of all the objects in the virtual world,
taking into account the forces producing that movement,
and to produce the haptic rendering corresponding to their
interaction with the user.

 Inside the virtual environment the human
operator can move the virtual probe (manipulator, finger
tip, specialized tool, etc.) using the haptic interfaces,
generating physical contact between the virtual probe and
the virtual objects. At this time, the simulator should
detect the corresponding interaction and generate the
graphic actualization of the virtual world using
geometrical and kinematical models. Moreover, the
simulator must calculate and generate the corresponding
reaction forces like a repulsive force proportional to the
amount of probe penetration into a virtual object, and to
calculate and display the effects of these forces, like
elastic and plastic deformations. The calculation of these
forces and their effects over the virtual objects are based
on the dynamical mo dels and depend on the kind of
materials supposed to be used to build that objects.

4.1. Geometric and Kinematical Models
 First of all, a virtual world is a very realistic
simulation capable to produce some kind of sensorial
feedback to the human operator, where the visual
feedback is an interactive 3D graphical environment. To
have a visually realistic simulation the virtual objects must
be characterized by its geometry (shape, size), and its
surface (texture, color), while the position and orientation
of all the virtual objects present in the virtual environment
and their movement are ruled by its kinematics. Polygonal
objects, spline or algebraic surfaces, implicit surfaces,
CGS models, oct-trees, k -d trees, and deformable bodies
are some of the 3D models that can be used to represent
the geometry of the virtual objects. The 3D geometry and,
even, some surface properties of the objects living in the
virtual world can be created using languages specially
conceived to built rigid bodies in a virtual reality context,
as Java 3D, Visual Studio, OpenGL, and VRML (Virtual
Reality Modeling Language). In these languages some
primitives allows to construct complex interactive virtual
worlds.

 Often the objects to be represented in a given
virtual environment are very complex or the application
needs a very precise geometric representation, introducing
a supplementary difficulty to generate their representation.
In those cases, it is possible to acquire the real object by
digitalization using some stereovision techniques,
including the medical imaging systems (computer
tomography, nuclear-magnetic resonance). Some
commercial haptic devices have utilities to acquire
geometric 3D information about the objects to be
digitalized. By example, the GHOST SDK system, which is
the development toolkit for the PHANToMTM haptic device,
permits to construct virtual environments

Positions and orientations

Human
operator

Forces and torques

Haptic
Rendering

3D Visual
Display Virtual World

Kinematical
Models

Dynamical
Models

Collision
detection

Simulator
(Virtual world)

Haptic
Interfaces Materials

 In despite of the method used to build the virtual
environment (construction or acquisition), it is always
possible to use photographic images as visual rendering
primitives. For the visual feedback purposes, the surface
representation of the virtual objects is quite enough, but
the haptic rendering objectives demand a volumetric
representation of the virtual objects. Nevertheless, in some
simple applications realistic haptic interaction can be
obtained between virtual objects modeled only by surface
representation. Independently of the geometric model
(surface or volumetric representation), an Internet browser
equipped with the specific plug-in is used to display
virtual environments created with a virtual reality
languages or acquired by digitalization.

 The movements of the objects in the virtual
environment are commanded by their kinematics,
equations relating the actuator’s output variables with the
position and velocity of each virtual object. Given a
mobile object in the virtual environment, its attitude and
its position is calculated by an external program based on
the kinematics of this object. By example, the kinematics
of a given mobile robot permits the calculation of the
position and orientation of this object from the values of
the position and velocity of the robot’s actuators moving
their wheels.

 In order to have a virtual environment with a
realistic visual feedback, we need to solve the geometrica l
as well as the kinematical model which represent,
respectively, the aspect and movement of the virtual
objects under consideration. Before calculating the
reaction forces trough dynamical models that match with
the interaction between the virtual object and the user’s
probe, we need to detect and measure the corresponding
contact.

4.2. Collision detection
The collision detection problem is found in

computer-simulated environments, computer aided design
and machining (CAD/CAM), manufacturing, computer
graphics, animation and Robotics. It is a bottleneck in all
kinds of applications involving contact analysis and
special reasoning among static or moving objects, such as
motion planning, animation of articulated objects,
assembly and disassembly, tolerance verification, or
obstacle avoidance. In the haptic loop, collision detection
is the first step, whose goal is to automatically report any
geometric contact between the user’s probe and the
geometrical model. In computer graphics, collision
detection is used to detect if there is overlapping of two
given objects, while in haptic rendering its goal is not only
to verify collisions between objects, but also to calculate
the appropriate interaction forces to convey to the user the
corresponding tactile feel.

 In computer graphics, collision detection of static
objects has many solutions. When the virtual objects are
in movement, the trajectory of the analyzed object must be
known a priori and parameterized as a function of time. At
fixed time intervals, the consecutive positions of the
object along of the known trajectory are calculated to
check the interferences with other objects in the virtual
world. When a human operator moves the objects, their
position, velocity and acceleration are unconstrained
variables with abrupt changes in direction and speed,
making collision detection a highly consuming
computational resources activity. When the considered
objects have a complex geometry, to detect collisions may
be a hard task [6], [2].

 In a simple approximate approach a contact is
detected when interference between the bounding boxes
associated to virtual objects appear. In this method, the
bounding box is a rectangular prism, whose edges are
aligned with the axes of the world system of coordinates,
constructed to enclose the entire object. In the Axis
Aligned Bounding Boxes method (AABB), interference
between two bounding boxes (rather than the
corresponding objects) is detected whenever they overlap
in all three orthogonal projections of both prisms.

Figure 5. Bounding boxes produced by AABB and OBB
algorithms respectively.

Figure 6. Collision between bounding boxes are not
necessarily collision between the corresponding objects.

There is static and dynamic bounding, static ones
have constant dimensions, and they need to be large
enough to accommodate any possible orientation of that
object in space; while a dynamic bounding box changes its
dimensions as a function of the object’s orientation even
tough it remains aligned with the world’s coordinate

Oriented
Bounding Boxes

Collision between bounding boxes

system. Dynamic bounding boxes reduce the volume
wasted by static ones at expense of increased
computational load.

 The AABB method works fast but its low
accuracy may pose some problems if dexterous
manipulation of virtual objects is needed (see figure 6).
Nevertheless, it is possible to increase the accuracy of the
collision detection if the bounding box is oriented with the
direction minimizing the non-occupied volume in the
bounding box. In the oriented bounding boxes (OBB)
algorithm, based on the statistics of the object, the
bounding boxes are oriented with the basis formed by the
normalized eigenvectors of the covariance matrix (see
figure 5). The iterative version of this algorithm produces
a hierarchical model, the OBB-Tree, formed by a
sequence of overlapped bounding boxes locally oriented,
producing a tight fitting representation. The OBB-Tree is
a highly structured model reducing computational cost in
collision detection when there are many objects or when
they are very complex.

 In the AABB or OBB algorithms we can use also
bounding spheres, ellipsoids, cylinders or cones. The
choice of the bounding volume is driven by two
conflicting constraints: the selected volume should fit the
original object as tightly as possible, and testing two such
volumes for overlapping should be as fast as possible. In
the AABB algorithm, the use of spheres permits the rapid
test of the interference, but it has some problems to
accommodate tightly long and thin oriented objects. Using
ellipsoids in the OBB algorithm produce tight fits but
checking interferences is an expensive task from
computational viewpoint.

 In both AABB and OBB algorithms, not all
overlapping boxes will correspond to a collision, due to
their unoccupied volume (see figure 6). To actualize the
3D virtual word for visual display this kind of
approximate collision detection algorithms may be
enough, but to calculate the force feedback needed in the
haptic device, an exact method is required, at least in the
approach and touching-grasping phases. Exact collision
detection requires, for static polyhedral objects, to test
every vertices of one object versus those of the second
object, to investigate the possible interference between
them.

 In despite of the complexity of the exact collision
detection methods, in the case of a virtual probe trying to
touch simple virtual objects, it is possible to generate
actualizations of the virtual world at a rate enough to
ensure stability of the force feedback loop and to produce
realistic haptic rendering. Rather than collision detection
between two arbitrary objects, in this case, we should
calculate the interference between a virtual probe,
corresponding to the haptic device, and a given object.
Two types of haptic interaction paradigms can be

implemented here: point-based and ray-based. For the
point-based haptic paradigm, the probe is simply modeled
as a point. For the ray-based collision detection
algorithms, the probe is modeled as a line segment. Both
techniques have advantages and disadvantages. For
example, it is computationally less expensive to render 3D
objects using point-based techniques, allowing higher
haptic servo rates. On the other hand, the ray-based haptic
interaction technique handles side collisions and can
provide additional haptic cues for conveying to the user
the shape of objects.

4.3. Dynamical Models
 To reproduce the kinesthetic and tactile senses,
we need to determine the dynamical behavior of the
interaction of the different objects living in the (simulated)
virtual world, based (primarily) on Newtonian physical
laws. Dynamical models, allowing to calculate and to
generate the feedback forces corresponding to those
interactions, should include elastic and plastic surface
deformations, some physical constraints and models to
simulate hard contacts (between rigid objects). When
comp liant virtual objects are grasped there are some
surface deformations in the region of contact between the
robot gripper and the grasped object. The geometric
properties of those deformations, that can be elastic or
plastic, are calculated and displayed using different kind
of models as vertex-based models or spline-based models.
While the forces associated with these deformations will
be calculated by dynamical models taking into account the
physical properties of the considered objects (mechanical
compliance, mechanical impedance and elasticity). To
produce more realistic simulations, physical constraints as
gravity or friction may also be considered in the physical
modeling of the virtual world.

 The mechanical compliance of a given object
represents its softness or hardness feeling during static
interactions. A given object deformation corresponds to
small forces if this object is soft, or to large forces if it is
hard. To take into account dynamic effects we can use a
more general variable, the mechanical impedance, which
grows with the object mass, velocity, and acceleration.
The elasticity of the virtual object is a physical property
with an important influence on the forces during surface
deformation. Elastic objects regain their original shape
once the deforming force ends, while the no elastic objects
remain deformed. The rigid (very stiff) objects generate
large interaction forces without surface deformation.

4.4.1. Surface mechanical compliance
 In the haptic loop context, one’s interest is to
calculate elastic deformation of virtual objects for their
visual displaying, when they are manipulated by a human
user through an haptic device; and, simultaneously, the
generation of the forces resulting of this interaction to

produce the corresponding kinesthetic feedback. In this
kind of realistic simulations, the immersion of the user in
the corresponding virtual world is made through a haptic
device representing the movements of one of the user’s
fingers simulated in the virtual space as a probe that can
be modeled using one of two different paradigms: a point-
based or a line-based paradigm.

 Point-based paradigm greatly simplifies the
development of both haptic device and haptic rendering
algorithms. Moreover, it allows a bandwidth and force
fidelity that enable the simulation of a wide range of
interactions. Here, the problem of computing the haptic
rendering is reduced to one of tracing the motion of a
point (the virtual probe tip) among the virtual objects and
producing the forces representing the interaction between
the virtual probe with that objects. Zilles and Salisbury
call haptic interface point (HIP) to the endpoint location of
the physical haptic device, as sensed by the encoders.

 Due to the inherent mechanical compliance of the
haptic devices, the maximum stiffness of any virtual
object is limited. Then, the HIP often penetrates into a
virtual object a greater distance than that possible in real
life. In early haptic rendering systems, this penetration
used to calculate directly the corresponding feedback
force, this method is well suited to model simple virtual
objects (planes, polyhedral or spheres). But, the use of
simple mechanical impedance to model surface contacts
has some drawbacks: small and thin objects do no have
the internal volume required to generate realistic
interaction forces; traversing volume boundaries generates
force discontinuities; it is often unclear which piece of
internal volume should be associated with which surface
[14].

 Hooke’s law, the most used model of elastic
deformation in virtual reality haptic rendering systems, is
expressed as:

xk ∆=F

where the constant k is the stiffness of the virtual object
and ∆x is the surface deformation along a specified
direction. This linear equation modeling the object
stiffness is well suited for real-time force simulation.
When the HIP is approaching a virtual object and goes
inside it, the haptic rendering algorithm must calculate the
feedback reaction force based on Hooke’s law. This force
is proportional to the penetration and should be normal to
the touched surface. But, once inside, it is no possible to
know what was the penetrated surface and it will be
choose the nearest one.

 This solution can produce some mistakes, which
can be avoided dividing the polyhedral objects in sub
volumes whose base is the considered facet and its apex is
the centroid of the considered object. Thus, the direction

of the reaction force will be normal to the facet of the sub
volume having the HIP (see figure 7). For small and thin
objects , the result can be worst. Once the HIP is inside the
virtual object, a reaction force proportional to the
penetration is calculated, but the user will continue to
penetrate more deep into the object, due to the limitation
on the haptic device stiffness. Then, it is easy to put the
HIP in the next sub volume forcing the algorithm to
generate a reaction force producing the HIP pass through
the virtual object, as depicted in figure 8 [14].

Figure 7. Using subvolumes to compute the forces (adapted
from Zilles and Salisbury, [14])

Figure 8. The hip pass through a thin object (adapted from
Zilles and Salisbury, [14])

 An alternative method to calculate the reaction
force is to consider, not the penetration of the probe tip
into the virtual object, but instead to constrain the motion
of a substitute virtual object. In the method proposed by
Ruspini, Kolarov, and Khatib, [13] a representative object,
a proxy, substitutes the probe tip (HIP), in the virtual
environment. The method considers the virtual proxy
connected to the HIP by a stiff spring. As the user moves
the probe tip in the virtual workspace of the haptic
interface (figure 9.a), it may pass through one or more
virtual objects. However, these objects stop the proxy
(figure 9.b), but quickly it moves, keeping always the
contact with the object surface, to a position minimizing
its distance to the HIP position commanded manually by
the user through the haptic interface (figure 9.c). Thus, the
force feedback will be produced by the virtual spring
connecting the proxy with the HIP .

 The method using the god-object , first proposed
by Zilles and Salisbury [14], represents an equivalent

i) The HIP is in
the approach
phase

ii) Reaction
force. The HIP
is still moving

iii) Direction of
reaction force
is changed

HIP

i) Approach phase:
the HIP entering the
object

ii) Which should be
the direction of the
reaction force?

iii) Correct direction
of the reaction
force

? HIP

approach to the proxy object, but here a priori knowledge
of the surface topology is required. The god-object
represents the virtual position of the HIP on the object’s
surface, constrained by the planes forming this surface,
while the HIP is really commanded by the user toward the
interior of that object. Lagrange multipliers are used to
determine the actual location of the god-object during
contact with a virtual object. This location is chosen to be
the point that locally minimizes the distance between the
god-object and the HIP, subject to the constraints that the
god-object is on a particular surface. Once the god-object
location is determined, simple impedance control
techniques may be used to calculate the force to be
displayed. A stiffness and damping can be applied
between the HIP and the god-object, representing local
material properties [14].

4.4.2. Surface deformation

 In most cases, grasping assumes that the virtual
hand or gripper and grasped object are undeformable,
because of real-time computation constrains. Usually, the
grasped object should change its shape in response to the
grasping force applied by the user, and regains it once
released if the deformation is elastic, or remains deformed
when the deformation is plastic. Therefore the need of
interactive surface deformation methods that satisfy the
real time requirements of realistic simulation, classified as
vertex based and spline-based, depending on whether the
object surface is represented by polygonal meshes or
parametric equations.

 Vertex-based Methods. In the 3D models based
on polygon meshes, vertices and edges define each
polygon. Both vertices and edges are shared by adjacent
polygons, then, storing all the polygons forming the
virtual object implies to store some vertices several times.
To avoid the problem, some graphics languages save the

mesh as a look-up table with pointers to edges and,
subsequently to vertices. In systems based on this kind of
3D geometrical model the user can interactively change
the location of a vertex and its neighbors, according to
some application-dependent deformation propagation law,
in the corresponding look-up table, redefining the shape of
polygons sharing it during the image rendering. When a
virtual probe touch the surface of a 3D object the touched
point goes inside the object pulling-in its neighbors
following a given deformation propagation law. The
surface of objects with a complex geometry, as body
organs (liver, kidney, gall bladder), can be considered as
an active surface. An active surface is an energy-
minimized polygonal mesh which, when deformed, will
seek to return to a low-energy state. The energy
minimization process is modeled with ideal springs
attaching each mesh vertex with its neighbors and
between the current and rest vertex positions. The object
mesh look-up table will require supplementary
information about the position of the considered vertex
(home, current) and the external applied force.

 Spline-based Methods . We can use functions of
higher degree than linear functions describing a polygonal
plane, to reduce the storage needs, and to provide
increased surface smoothness. Parametric bicubic surfaces
are described by three point coordinates x(s,t), y(s,t), z(s ,t)
being a function of two parameters s and t. A particular
point location on this surface depends on the particular
parameters s and t values, where s, t∈[0,1]. Thus, the
points (0,0), (0,1), (1,0) and (1,1) correspond to the end
points of the parametric surface. Several such patches can
be joined or splined smoothly at knot points by assuring
continuity of the first and second derivatives. Depending
on the control points that determine the values of the
constant coefficients, we can have different kinds of
splines: hermite splines, Bezier splines, and β-splines.

Figure 9. Haptic rendering using a proxy object. (Adapted from Ruspini and Kolarov, [13])

Proxy = HIP

Virtual object
a)

HIP

Proxy

b)

Virtual spring: xk∆=F

HIP

Proxy

c)

∆x

5. Conclusions
In order to create the illusion of touching a

virtual object in a user of a haptic device, one has to solve
several issues: a geometrical model, a dynamical model
associated to the geometrical one, the use of a collision
detection technique, a real time reaction force calculation
in response to the user’s manipulation, the stable and fast
enough realistic visual and force rendering so that the user
keeps immersed in the virtual world.

As we count on limited human and financial
resources, our project is limited to the study of the
geometrical and dynamical models of deformable objects
that conforms the heart of the haptic system, which in the
future may lead to get resources to buy haptic devices that
contribute to close the haptic loop that provides a surgical
application in the laparoscopic or endoscopic modes or an
industrial one for training or prototyping production.

References
[1] Adams, R.; Hannaford, B. “Control Law Design for

Haptic Interfaces to Virtual Reality” IEEE Trans.
Control Systems Technology, vol. 10, pp. 3-13, Jan
2002.

[2] Burdea, Grigore C. “Haptics Issues in virtual
Environments”. IEEE. 2000.

[3] Bauman, R.; Clavel, R. ‘Haptic interface for virtual
reality based minimally invasive surgery
simulation’. Proc. IEEE Int. Conf. On Robotics and
Automation. 1998. Pages 381 - 386

[4] Carignan, C.R.; Cleary, K.R. “Closed Loop Force
Control for Haptic Simulation of Virtual
Environments”. Haptics-e. 1 [2] 2000.

[5] Colgate, E., Grafing, P.; Stanley, M.; Schenkel, G.
“Implementation of Stiff Virtual Walls in Force
Reflecting Interfaces”. Proc IEEE Virtual Reality
Annual International Symposium (VARAIS), IEEE,
New York. 22pp. 1993.

[6] Cohen, J.; Lin, N.; Manocha D.; Ponamgi, N. “I-
COLLIDE: An Interactive an Exact Collision
Detection System for Large Scale Environments”.
Proc. ACM Interactive 3D Graphics Conference,
ACM, New York, pp 189 -196. 1995.

[7] Hannaford, B; Ryu J.H.; Kim, Y.S. ‘Stable Contro
Haptics’ in ‘Touch in Virtual Environments. Haptics
and the design of interactive Systems’. Ed.
McLaughlin, M.L.; Hespanha, J.P.; Sukhatme, G.S.
New Jersey: IMCS. 2001 p. 47 – 70.

[8] Hogan, N. “ Impedance Control: An Approach to
Manipulation: Part I-II-III”. Journal of Dynamic
Syst., Measure, and Cont., 107(1):1-24. 1985.

[9] Hogan, N. “Controlling Impedance at the
Man/Machine Interface”. Proc. IEEE International
Conference on Robotics and Automation, IEEE,
New York, pp 1626-1631. 1989.

[10] Immersion Corporation. FeelItTM Mouse. Technical
Document, San Jose, CA, USA. 12 pp., October 1,
1997. Electronic version: www.immerse.com.

[11] Massie, T.; Salisbury K. ‘The Phantom Haptic
Interface: A device for Probing Virtual Objects’.
Proceedings of ASME WAM, DSC-Vol. 55 -1, 1994,
pp295-300.

[12] McLaughlin, M.L.; Hespanha, J.P.; Sukhatme G.S.
(ed.). “Touch in Virtual Environments: Haptics and
the design of Interactive Systems”. IMSC Press
Multimedia Series, Andrew Tescher, Series Editor.
Prentice Hall PTR, NJ, USA. 2002.

[13] Ruspini, D., Kolarov, K., “Robust Haptic Display of
Graphical Environments,” Proc. of The First
Phantom User’s Group Workshop, September 1996.

[14] Zilles, C.B.; Salisbury, J.K.. ‘A Constranint-based
God-object Method for Haptic Display’. Department
of Mechanical Engineering. Artificial Inteligence
Laboratory. MIT. Cambridge, MA. en
http://citeseer.nj.nec.com/cache/papers/cs/2516/http:
zSzzSzwww.cs.wisc.eduzSz~zilleszSziros.pdf/zilles
95constraintbased.pdf. 1995

