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Abstract 
 In addition to surgical applications and Robotics, 
the haptic interfaces are used in scientific visualization, in 
training, to assist visually impaired people, and to built 
realistic simulation systems. The computer simulation 
based on virtual reality should calculate the inputs to the 
physical haptic interface, which depends on both 
simulation modeling and control algorithms. Moreover, 
they rely entirely on real-time computer input. Then, the 
haptic rendering to be used in control of the haptic 
interface needs the real time solution of the models 
representing the complete dynamical behavior of the 
simulated system. The main issues in the haptics domain 
are control of mechanical devices using force feedback; 
creation of realistic virtual worlds, production of realistic 
kinesthetic and tactile feels; teleoperation and 
telepresence together with data compression; and the 
construction of haptic devices The contents of this 
document have a general interest in the wide world of 
realistic simulations, but is more detailed in the aspects 
touching robotic application and the case with point 
contact obtained, by example, with the Phantom system, 
with emphasis in the haptic rendering aspects. 

1. Introduction 
 Computer simulation is a powerful tool, very 
useful to understand or to control all kinds of natural 
phenomena or human designed systems. The objectives of 
computer simulation include the understanding of the 
simulated systems, the design of their components, the 
control of their behavior or the performance optimization 
of those systems. Dynamic behavior of natural or man 
made systems, kinematics of moving mechanisms, 
geometrical and topological properties of objects and the 
relationships between them, are some of the phenomena 
that we are interested in to simulate. 

 At its early stages, computer simulation gave 
only a listing with values of the variables of interest. The 
graphical representation of the simulation results was a 
big progress. But nowadays, Computer Science provides a 
wide variety of methods to display the results of 
simulations, including sophisticated 3D interactive virtual 

worlds, together with sound feedback. But there are some 
applications where this kind of feedback is not enough to 
evaluate the simulation results. In surgical training 
systems or in programming robot’s tasks concerning 
contact with its environment, we need to involve more 
than the sense of vision, to have more realistic immersion 
systems. It is our sense of touch that provides us with 
much of the information necessary to interact with our 
environment. It involves information about physical 
properties such as inertia, friction, compliance, roughness, 
and temperature. We use the term haptic to evoke the 
sense of touch or something related to this sense [8]. 
Then, a physically accurate simulation joining all kinds of 
sensorial information, like vision, sound, and touch, let us 
obtain insight into the real-world behavior of the dynamic 
system under study, and enhance the level of immersion in 
a virtual world. 

 Haptics can be divided into two categories. First, 
the kinesthetic sense, based on force feedback, through 
which we sense movement or forces in muscles and joints 
corresponding to the weight of the grasped virtual objects, 
their mechanical compliance, inertia, as well as motion 
constraints. Secondly, the tactile sense that allows human  
operator to feel the roughness of virtual surfaces 
(textures), their edges (shapes), and their temperature. 

 In this frame, we need a touch interface, known 
as haptic interface, to reproduce kinesthetic and tactile 
senses corresponding to the interaction of the user with the 
objects living in virtual worlds. Haptic interface is a force-
reflecting mechanical device used to apply forces to a 
human operator, typically through his finger or hand, 
creating the illusion of physical contact with a real 
physical environment. The main goal of the haptic 
interface is to command the movements of the objects in a 
virtual environment, displaying to the user the 
corresponding interaction forces, together with the 3D 
visualization of the corresponding virtual environment. 
Then, the use of haptic interfaces allows very realistic 
virtual reality (VR) simulations. 

 This document intends to be a survey on the 
primary issues in Haptics, starting with the presentation of 
the main kind of haptic devices used in the area of force 
feedback simulations or teleoperation, and some 
interesting points about the control of mechanical devices 



to produce force feedback. The aspects about the haptic 
rendering problem, together with the dedicated to haptic 
devices, are the subject of one of the most detailed 
chapters, including: physical modeling (kinematical and 
dynamical models), collision detection, grasping, object 
deformations and generation of the interaction forces.  

2. Haptic Devices 
 Haptic mechanical interfaces and its supporting 
software are alternative or supplementary input devices to 
the mouse, keyboard, or joystick, that allow us to feel and 
manipulate objects laying in virtual worlds in a very 
realistic way considering the shape, texture, weight, 
stiffness, and temperature of that objects. Haptic devices 
are capable, through its actuators, to deliver some forces 
to the user proportionally to his interaction with the virtual 
world. In this sense, haptic interfaces have a bi-directional 
energy exchange between the user and the computer (see 
figure 1), unlike devices used exclusively as input (mouse, 
keyboard) or output (visual and sound feedback). 

 When the user changes the position of the haptic 
interface, or applies forces, data are transmitted to the 
computer at very high rates. Once captured, the data are 
processed running specialized haptic programs (graphic 
rendering, collision detection, haptic rendering, etc.) wich 
refresh the manipulated virtual world. In response to the 
changes in the virtual world, the computer sends, to the 
haptic interface, the corresponding positions and forces to 
be felt by the human operator. 

 In Computer Graphics and image processing 
applications, low scene refresh rates of 20 to 30 
frames/sec are enough to satisfy the human sensorial 
requirements . In contrast, the response of our sense of 
touch is better to vibrations of 200 to 300 Hz or higher. 
The difference between haptics and vision bandwidths is 
one order-of-magnitude, motivating the use of a dedicated 
controller for the haptic interface to guarantee not only 
high fidelity force feedback, but also dynamic stability. 

 Taxonomy of haptic devices is not an easy task. 
We can classify them depending on the type of feedback 
used, their grounding arrangement, the type of actuators 
used, or the application area. Here, we are interested in 
general-purpose haptic devices, as opposed to those 
developed for a specialized application, such as surgical 
training. Most of the actual haptic interfaces use electrical 
actuators, especially DC motors, because of their ease of 
installation, control and cleanliness, with pneumatic and 
hydraulic actuators being less common. Depending on the 
type of feedback used, the haptic interfaces can be tactile 
or kinesthetic. Haptic devices producing force feedback 
(kinesthetic type), as opposed to devices with tactile 
feedback, can actively prevent a user from moving into 
restricted simulation space. However, this kind of haptic 
devices lacks the rich contact surface information 

produced by tactile feedback. High bandwidth haptic 
interfaces combining tactile and force feedback, such as 
the PHANToM arm, are best suited to fulfill the 
requirements of realistic VR simulations. 

 To produce some forces to the user, the haptic 
device needs a fixed mechanical reference. The haptic 
interfaces must be attached (grounded) to an immovable 
support to be able to apply forces to the human operator 
and to resist the actions of the user, even stopping him 
through large feedback forces. The immovable support 
provides also equilibrium and mechanical stability of the 
haptic device. Then, there are two kinds of haptic devices, 
depending on the grounding arrangement: those with 
reference in the user’s body and devices with reference in 
a desk, in a wall, etc. Exoskeletons and gloves are devices 
of the first type, while most of the haptic devices from the 
second group are little desk-grounded articulated 
mechanisms, even if, in this group, there are also 6 dof 
(degree of freedom) robots, haptic joysticks, and a special 
kind of force feedback mice. 

 
 
 
 
 

Figure 1. Haptic Interface viewed as a two -port System. 

2.1. Desktop haptic devices 
 The taxonomy adopted in this document takes 
into account the type of attachment used by the haptic 
mechanical interfaces, but there are some other criteria to 
classify these devices. We can consider, for example, the 
kind of energy used as criteria, to distinguish between 
pneumatic, hydraulic or electric force feedback devices. 
Haptic devices can be classified also following the type of 
control or communication loop; we can have thus position 
control based or force control based haptic devices, and 
hybrid systems based on both position and force control. 

 Desk-grounded haptic devices are, in fact, small 
robot arms with at least three joints; DC motors actuate on 
each of them. A computer controls the haptic device to 
emulate the sense of touch producing a force proportional 
to the reaction exerted by the virtual environment, sending 
voltages to the motors when a collision between the tip of 
the haptic device and virtual objects is detected, to 
materialize the reaction force. 

 Joysticks. For many years, joysticks have been 
used in entertainment, computer graphics and industrial 
control applications. New versions of this input device 
include DC actuators to produce active forces to be felt by 
user, but they need more than the classical 2 DOF to exert a 
realistic feedback forces on the user’s hand. The force 
feedback joysticks can have the classical spherical 
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configuration with an extra rotational DOF or a Cartesian 
configuration with a third rotational DOF. The joystick can 
have also the Stewart Platform configuration with 6 DOF. 
The parallel cinematic structure of the Stewart Platform 
has better position accuracy, higher load capacity, and can 
exert big efforts than serial configurations like 3 DOF arms 
or joysticks. Its smaller work volume, the difficult force 
control and its complex direct kinematics are some of the 
Stewart Platform drawbacks. 

 The PHANT oM. Produced by SensAble 
Technologies in Cambridge, MA, USA, the PHANToMTM 
is  a small pen-based desk-grounded robot that permits VR 
simulation of single fingertip contact with virtual objects 
through a thimble or stylus. This is a weight 
counterbalanced and back drivable arm whose workspace 
is those of the user’s wrist. It tracks the position  and 
orientation of the virtual probe as it moves about the 3D 
workspace, and its actuators produces forces back to the 
user’s fingertip as it detects collisions with objects in the 
virtual world. The haptic feedback of the PHANToMTM arm 
is ext remely crisp, due to its low inertia and static friction 
combined with its very high control bandwidth (1,000 
Hz). This kind of desktop haptic device can reproduce 
both the kinesthetic sense (force feedback) and some 
features of the tactile sense. [11]. 

 The FEELItTM Mouse. This device, produced by 
Immersion Corporation in San Jose, CA, USA, is an 
example of a desktop tactile feedback interface. It is a 2 
DOF mouse used to feel the roughness of the virtual object 
when the associated arrow is traversing one of its virtual 
surfaces in the screen. It is possible also to push with the 
arrow into virtual objects to determine their elasticity. 

2.2. Wearable haptic devices 
 CyberTouchTM. Wearable interfaces are haptic 
devices grounded to the user’s body that has the 
workspace of the user’s arm, giving him a larger work 
volume than desktop haptic devices do. These devices are, 
in fact, gloves that allow users to interact with virtual 

worlds in a dexterous way through natural hand gestures. 
An example of a tactile feedback glove is the 
CyberGloveTM, used by the CyberTouchTM and the 
CyberGraspTM devices, where 18 sensors measure the 
hand position. In the CyberTouchTM produced by Virtual 
Technologies, Palo Alto, CA, USA, the feedback is 
produced by six small vibro-tactile actuators, placed on 
the back of each finger and in the palm, vibrating at 
frequencies of up to 125 Hz. 

 The CyberGraspTM. This device from Immersion 
Corporation, is a 22 DOF exoskeleton that fits over a 
CyberGloveTM, providing force feedback. In this device, 
the vibro-tactile actuators are replaced by a complex 
exoskeleton on the back of the user’s hand formed by 
tendons transmitting forces produced by DC motors 
placed in a control box. These tendons can produce a 
continuous force of 12 N on each finger when the user is 
closing his hand. In some models an external device, like 
Polhemus Fastrak, measures the position and the 
orientation of the glove in the 3D space. 

 Desktop interfaces have a very limited 
workspace but can exert more important forces than 
wearable devices. Desktop devices are more ease to use 
and the relationship between compactness and force 
capabilities is better than in wearable devices. Gloves and 
exoskeletons have a large weight, and have important 
difficulties to generate forces corresponding to the virtual 
objects weight. Nevertheless, each kind of haptic device 
has its own application area. 

 Haptic Interfaces are articulated arms with a 
certain number of DOF formed by linkages and motion 
transmissions, where each joint is equipped with an 
encoder measuring its angular position, and a DC motor 
with its servo amplifier and D/A converter moving that 
joint. Different kinds of haptic device have the same 
electromechanical structure; in figure 2 is depicted a 
scheme of a general haptic interface. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Scheme of a Haptic Interfaces from control viewpoint. 
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3. Force Feedback 
 The objective of the haptic interfaces is to 
produce the force feedback materializing the sense of 
touch, it allows a person to feel the weigh of virtual 
objects, or the resistance to motion that they create. Force 
and velocity are the key variables that define the nature of 
haptic contact. The goal of control law design for haptic 
displays is to provide a safe and stable user interface while 
maximizing the operator’s sense of kinesthetic immersion 
in a virtual environment, it must provide realistic sense of 
touch taking into account two main requirements: high 
fidelity rendering and stability. But these two objectives 
are opposite in the sense that high fidelity haptic rendering 
need high force feedback gains generally producing self-
induced oscillations and instability. 

There are two classes of control schemes 
available for force reflection: impedance control and 
admittance control. Impedance controlled systems detect 
the motion commanded by the operator and control the 
force applied by the haptic device as in figure  1. 
Admittance controlled systems detect the force 
commanded by the operator and control the velocity or 
displacement of the haptic device [3]. Impedance 
controllers were generally used when the environment 
being simulated was highly compliant, such as human 
tissue in surgical simulators. Admittance control was 
generally used when the environment was unyielding such 
as flight simulator p lataforms [4]. 

 The haptic interface can be considered like a 
two-port system terminated on one side by the user and by 
the virtual world on the other side. In that scheme, 
inspired on electrical networks [1], a force Fh and a 
velocity vh characterize the energy exchange between the 
user and the haptic interface, whereas a force Fv and a 
velocity vv represent the exchange between the interface 
and the virtual world. To have an ideal behavior, from the 
haptic rendering point of view, the haptic interface should 
be transparent (Fh=Fv and vh=vv, in figure 1); but haptic 
system requirements, from the stability point of view, 
demands to introduce some haptic distortion. 

 The interaction between the user and the virtual 
world is a bi-directional transfer of energy, since force 
multiplied by position represents mechanical work.  
According with Hannaford, B. et al. [7], the two port 
network with initial energy storage at t=0 of E(0), is 
passive if, and only if: 
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the energy applied to a passive network must exceed         
–E(0) at all times, which means that the system dissipates 
energy, otherwise it is active because it generates energy. 

Active ports may contribute to inestability. The behavior 
of the user interacting with haptic interfaces is passive, 
because he does not introduce energy into the system [9]. 
Moreover, most mechanical virtual worlds are also 
passive, then, the stability of the overall system is 
guaranteed when the haptic interface is designed to be also 
passive. However, the sampling process perturbs the 
natural passivity of the virtual environment. In fact, it was 
shown that the smaller the sampling rate, the more energy 
can be generated by a virtual wall [5]. 

 Adams  et al [1] use a Passivity Observer (PO) 
and a Passivity Controller (PC) for reducing the 
performance compromise required for stable contact 
applied to haptics and bilateral teleoperations. When there 
are multiple interconnected elements, they observe each 
one separately in order to determine which ones are active 
and which are passive. The PO may or may not be 
negative for any one port element in the system at a 
particular time, but if it is negative, then the port may be 
contributing to instability, as they know the exact amount 
of energy generated, a time varying element, called a 
Passivity Controller, is designed in order to dissipate only 
the required amount of energy. 

 The basic haptic interface simulation consists of 
the human operator (HO), the haptic interface (HI), the 
passivity controller (PC) and the virtual environment (VE) 
as shown in figure 3 [1]. 

 

 

 

 

Figure 3. Haptic Interface viewed as a several port System. 

3.1. State of the art in control of haptics 
 In any kind of application, virtual worlds of 
interest are always nonlinear and the dynamic properties 
of a human operator are always involved. These factors 
make it difficult to analyze haptic systems in terms of 
known parameters and linear control the ory. The rapid 
growth of haptics makes control engineering more 
important. The objective of the control is to ensure the 
stability of the haptic system (including the haptic device, 
the corresponding software and even the human operator) 
creating a compelling sense of haptic presence. 

4. Haptic Rendering 
 In the context of a dynamical system simulated in 
a computer like an interactive virtual environment, a 
human operator should be able to manipulate objects 
living in a corresponding virtual world sensing both a 3-D 
visualization and the interaction forces between h is hand 
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Figure 4. Virtual simulator should produce both visual display and haptic rendering. 

and the manipulated virtual objects. Here, we call Haptic  
Rendering the display of the acting forces between user 
and the virtual environment through a motorized haptic 
device, used to manipulate the virtual objects, permitting 
the user to feel those forces. 

 A computer simulator capable to produce visual 
and force feedback is a complex system based on the real 
time evaluation of geometrical, kinematical and dynamical 
models (See figure 4). Geometrical and kinematical 
models are used not only to display the corresponding 3D 
virtual environments but also to detect the interaction 
between user and virtual objects living in this environment 
(collisions) and to calculate the geometric restrictions of 
virtual objects, including the user’s probe. In the 
simulator, dynamical models are used to calculate the 
movement behavior of all the objects in the virtual world, 
taking into account the forces producing that movement, 
and to produce the haptic rendering corresponding to their 
interaction with the user. 

 Inside the virtual environment the human 
operator can move the virtual probe (manipulator, finger 
tip, specialized tool, etc.) using the haptic interfaces, 
generating physical contact between the virtual probe and 
the virtual objects. At this time, the simulator should 
detect the corresponding interaction and generate the 
graphic actualization of the virtual world using 
geometrical and kinematical models. Moreover, the 
simulator must calculate and generate the corresponding 
reaction forces like a repulsive force proportional to the 
amount of probe penetration into a virtual object, and to 
calculate and display the effects of these forces, like 
elastic and plastic deformations. The calculation of these 
forces and their effects over the virtual objects are based 
on the dynamical mo dels and depend on the kind of 
materials supposed to be used to build that objects. 

4.1. Geometric and Kinematical Models 
 First of all, a virtual world is a very realistic 
simulation capable to produce some kind of sensorial 
feedback to the human operator, where the visual 
feedback is an interactive 3D graphical environment. To 
have a visually realistic simulation the virtual objects must 
be characterized by its geometry (shape, size), and its 
surface (texture, color), while the position and orientation 
of all the virtual objects present in the virtual environment 
and their movement are ruled by its kinematics. Polygonal 
objects, spline or algebraic surfaces, implicit surfaces, 
CGS models, oct-trees, k -d trees, and deformable bodies 
are some of the 3D models that can be used to represent 
the geometry of the virtual objects. The 3D geometry and, 
even, some surface properties of the objects living in the 
virtual world can be created using languages specially 
conceived to built rigid bodies in a virtual reality context, 
as Java 3D, Visual Studio, OpenGL, and VRML (Virtual 
Reality Modeling Language). In these languages some 
primitives allows to construct complex interactive virtual 
worlds. 

 Often the objects to be represented in a given 
virtual environment are very complex or the application 
needs a very precise geometric representation, introducing 
a supplementary difficulty to generate their representation. 
In those cases, it is possible to acquire the real object by 
digitalization using some stereovision techniques, 
including the medical imaging systems (computer 
tomography, nuclear-magnetic resonance). Some 
commercial haptic devices have utilities to acquire 
geometric 3D information about the objects to be 
digitalized. By example, the GHOST SDK system, which is 
the development toolkit for the PHANToMTM haptic device, 
permits to construct virtual environments  
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 In despite of the method used to build the virtual 
environment (construction or acquisition), it is always 
possible to use photographic images as visual rendering 
primitives. For the visual feedback purposes, the surface 
representation of the virtual objects is quite enough, but 
the haptic rendering objectives demand a volumetric 
representation of the virtual objects. Nevertheless, in some 
simple applications realistic haptic interaction can be 
obtained between virtual objects modeled only by surface 
representation. Independently of the geometric model 
(surface or volumetric representation), an Internet browser 
equipped with the specific plug-in is used to display 
virtual environments created with a virtual reality 
languages or acquired by digitalization. 

 The movements of the objects in the virtual 
environment are commanded by their kinematics, 
equations relating the actuator’s output variables with the 
position and velocity of each virtual object. Given a 
mobile object in the virtual environment, its attitude and 
its position is calculated by an external program based on 
the kinematics of this object. By example, the kinematics 
of a given mobile robot permits the calculation of the 
position and orientation of this object from the values of 
the position and velocity of the robot’s actuators moving 
their wheels. 

 In order to have a virtual environment with a 
realistic visual feedback, we need to solve the geometrica l 
as well as the kinematical model which represent, 
respectively, the aspect and movement of the virtual 
objects under consideration. Before calculating the 
reaction forces trough dynamical models that match with 
the interaction between the virtual object and the user’s 
probe, we need to detect and measure the corresponding 
contact. 

4.2. Collision detection 
The collision detection problem is found  in 

computer-simulated environments, computer aided design 
and machining (CAD/CAM), manufacturing, computer 
graphics, animation and Robotics. It is a bottleneck in all 
kinds of applications involving contact analysis and 
special reasoning among static or moving objects, such as 
motion planning, animation of articulated objects, 
assembly and disassembly, tolerance verification, or 
obstacle avoidance. In the haptic loop, collision detection 
is the first step, whose goal is to automatically report any 
geometric contact between the user’s probe and the 
geometrical model. In computer graphics, collision 
detection is used to detect if there is overlapping of two 
given objects, while in haptic rendering its goal is not only 
to verify collisions between objects, but also to calculate 
the appropriate interaction forces to convey to the user the 
corresponding tactile feel. 

 In computer graphics, collision detection of static 
objects has many solutions. When the virtual objects are 
in movement, the trajectory of the analyzed object must be 
known a priori and parameterized as a function of time. At 
fixed time intervals, the consecutive positions of the 
object along of the known trajectory are calculated to 
check the interferences with other objects in the virtual 
world. When a human operator moves the objects, their 
position, velocity and acceleration are unconstrained 
variables with abrupt changes in direction and speed, 
making collision detection a highly consuming 
computational resources activity. When the considered 
objects have a complex geometry, to detect collisions may 
be a hard task [6], [2]. 

 In a simple approximate approach a contact is 
detected when interference between the bounding boxes 
associated to virtual objects appear. In this method, the 
bounding box is a rectangular prism, whose edges are 
aligned with the axes of the world system of coordinates, 
constructed to enclose the entire object. In the Axis 
Aligned Bounding Boxes method (AABB), interference 
between two bounding boxes (rather than the 
corresponding objects) is detected whenever they overlap 
in all three orthogonal projections of both prisms. 

 
 
 
 
 

Figure 5. Bounding boxes produced by AABB and OBB 
algorithms respectively. 

 

 
 
 
 
 
 
 
 
 

Figure 6. Collision between bounding boxes are not 
necessarily collision between the corresponding objects. 

There is  static and dynamic bounding, static ones 
have constant dimensions, and they need to be large 
enough to accommodate any possible orientation of that 
object in space; while a dynamic bounding box changes its 
dimensions as a function of the object’s orientation even 
tough it remains aligned with the world’s coordinate 
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system.  Dynamic bounding boxes reduce the volume 
wasted by static ones at expense of increased 
computational load. 

 The AABB method works fast but its low 
accuracy may pose some problems if dexterous 
manipulation of virtual objects is needed (see figure 6). 
Nevertheless, it is possible to increase the accuracy of the 
collision detection if the bounding box is oriented with the 
direction minimizing the non-occupied volume in the 
bounding box. In the oriented bounding boxes (OBB) 
algorithm, based on the statistics of the object, the 
bounding boxes are oriented with the basis formed by the 
normalized eigenvectors of the covariance matrix (see 
figure 5). The iterative version of this algorithm produces 
a hierarchical model, the OBB-Tree, formed by a 
sequence of overlapped bounding boxes locally oriented, 
producing a tight fitting representation. The OBB-Tree is 
a highly structured model reducing computational cost in 
collision detection when there are many objects or when 
they are very complex. 

 In the AABB or OBB algorithms we can use also 
bounding spheres, ellipsoids, cylinders or cones. The 
choice of the bounding volume is driven by two 
conflicting constraints: the selected volume should fit the 
original object as tightly as possible, and testing two such 
volumes for overlapping should be as fast as  possible. In 
the AABB algorithm, the use of spheres permits the rapid 
test of the interference, but it has some problems to 
accommodate tightly long and thin oriented objects. Using 
ellipsoids in the OBB algorithm produce tight fits but 
checking interferences is an expensive task from 
computational viewpoint. 

 In both AABB and OBB algorithms, not all 
overlapping boxes will correspond to a collision, due to 
their unoccupied volume (see figure  6). To actualize the 
3D virtual word for visual display this kind of 
approximate collision detection algorithms may be 
enough, but to calculate the force feedback needed in the 
haptic device, an exact method is required, at least in the 
approach and touching-grasping phases. Exact collision 
detection requires, for static polyhedral objects, to test 
every vertices of one object versus those of the second 
object, to investigate the possible interference between 
them. 

 In despite of the complexity of the exact collision 
detection methods, in the case of a virtual probe trying to 
touch simple virtual objects, it is possible to generate 
actualizations of the virtual world at a rate enough to 
ensure stability of the force feedback loop and to produce 
realistic haptic rendering. Rather than collision detection 
between two arbitrary objects, in this case, we should 
calculate the interference between a virtual probe, 
corresponding to the haptic device, and a given object. 
Two types of haptic interaction paradigms can be 

implemented here: point-based and ray-based. For the 
point-based haptic paradigm, the probe is simply modeled 
as a point. For the ray-based collision detection 
algorithms, the probe is modeled as a line segment. Both 
techniques have advantages and disadvantages. For 
example, it is computationally less expensive to render 3D 
objects using point-based techniques, allowing higher 
haptic servo rates. On the other hand, the ray-based haptic 
interaction technique handles side collisions and can 
provide additional haptic cues for conveying to the user 
the shape of objects. 

4.3. Dynamical Models 
 To reproduce the kinesthetic and tactile senses, 
we need to determine the dynamical behavior of the 
interaction of the different objects living in the (simulated) 
virtual world, based (primarily) on Newtonian physical 
laws. Dynamical models, allowing to calculate and to 
generate the feedback forces corresponding to those 
interactions, should include elastic and plastic surface 
deformations, some physical constraints and models to 
simulate hard contacts (between rigid objects). When 
comp liant virtual objects are grasped there are some 
surface deformations in the region of contact between the 
robot gripper and the grasped object. The geometric 
properties of those deformations, that can be elastic or 
plastic, are calculated and displayed using different kind 
of models as vertex-based models or spline-based models. 
While the forces associated with these deformations will 
be calculated by dynamical models taking into account the 
physical properties of the considered objects  (mechanical 
compliance, mechanical impedance and elasticity). To 
produce more realistic simulations, physical constraints as 
gravity or friction may also be considered in the physical 
modeling of the virtual world. 

 The mechanical compliance of a given object 
represents its softness or hardness feeling during static 
interactions. A given object deformation corresponds to 
small forces if this object is soft, or to large forces if it is 
hard. To take into account dynamic effects we can use a 
more general variable, the mechanical impedance, which 
grows with the object mass, velocity, and acceleration. 
The elasticity of the virtual object is a physical property 
with an important influence on the forces during surface 
deformation. Elastic objects regain their original shape 
once the deforming force ends, while the no elastic objects 
remain deformed. The rigid (very stiff) objects generate 
large interaction forces without surface deformation. 

4.4.1. Surface mechanical compliance 
 In the haptic loop context, one’s interest is to 
calculate elastic deformation of virtual objects for their 
visual displaying, when they are manipulated by a human 
user through an haptic device; and, simultaneously, the 
generation of the forces resulting of this interaction to 



produce the corresponding kinesthetic feedback. In this 
kind of realistic simulations, the immersion of the user in 
the corresponding virtual world is made through a haptic 
device representing the movements of one of the user’s 
fingers simulated in the virtual space as a probe that can 
be modeled using one of two different paradigms: a point-
based or a line-based paradigm.  

 Point-based paradigm greatly simplifies the 
development of both haptic device and haptic rendering 
algorithms. Moreover, it allows a bandwidth and force 
fidelity that enable the simulation of a wide range of 
interactions. Here, the problem of computing the haptic 
rendering is reduced to one of tracing the motion of a 
point (the virtual probe tip) among the virtual objects and 
producing the forces representing the interaction between 
the virtual probe with that objects. Zilles and Salisbury 
call haptic interface point  (HIP) to the endpoint location of 
the physical haptic device, as sensed by the encoders. 

 Due to the inherent mechanical compliance of the 
haptic devices, the maximum stiffness of any virtual 
object is limited. Then, the HIP often penetrates into a 
virtual object a greater distance than that possible in real 
life. In early haptic rendering systems, this penetration 
used to calculate directly the corresponding feedback 
force, this  method is well suited to model simple virtual 
objects (planes, polyhedral or spheres). But, the use of 
simple mechanical impedance to model surface contacts 
has some drawbacks: small and thin objects do no have 
the internal volume required to generate realistic 
interaction forces; traversing volume boundaries generates 
force discontinuities; it is often unclear which piece of 
internal volume should be associated with which surface 
[14]. 

 Hooke’s law, the most used model of elastic 
deformation in virtual reality haptic rendering systems, is 
expressed as: 

xk ∆=F  

where the constant k  is the stiffness of the virtual object 
and ∆x is the surface deformation along a specified 
direction. This linear equation modeling the object 
stiffness is well suited for real-time force simulation. 
When the HIP  is approaching a virtual object and goes 
inside it, the haptic rendering algorithm must calculate the 
feedback reaction force based on Hooke’s law. This force 
is proportional to the penetration and should be normal to 
the touched surface. But, once inside, it is no possible to 
know what was the penetrated surface and it will be 
choose the nearest one. 

 This solution can produce some mistakes, which 
can be avoided dividing the polyhedral objects in sub 
volumes whose base is the considered facet and its apex is 
the centroid of the considered object. Thus, the direction 

of the reaction force will be normal to the facet of the sub 
volume having the HIP (see figure 7). For small and thin 
objects , the result can be worst. Once the HIP  is inside the 
virtual object, a reaction force proportional to the 
penetration is calculated, but the user will continue to 
penetrate more deep into the object, due to the limitation 
on the haptic device stiffness. Then, it is easy to put the 
HIP  in the next sub volume forcing the algorithm to 
generate a reaction force producing the HIP  pass through 
the virtual object, as depicted in figure 8 [14]. 

 
 
 
 
 
 
 
 
 

Figure  7. Using subvolumes to compute the forces (adapted 
from Zilles and Salisbury, [14]) 

 
 
 
 
 
 
 
 

Figure 8. The hip pass through a thin object (adapted from 
Zilles and Salisbury, [14]) 

 An alternative method to calculate the reaction 
force is to consider, not the penetration of the probe tip 
into the virtual object, but instead to constrain the motion 
of a substitute virtual object. In the method proposed by 
Ruspini, Kolarov, and Khatib, [13] a representative object, 
a proxy, substitutes the probe tip (HIP), in the virtual 
environment. The method considers the virtual proxy 
connected to the HIP by a stiff spring. As the user moves 
the probe tip in the virtual workspace of the haptic 
interface (figure 9.a), it may pass through one or more 
virtual objects. However, these objects stop the proxy 
(figure 9.b), but quickly it moves, keeping always the 
contact with the object surface, to a position minimizing 
its distance to the HIP  position commanded manually by 
the user through the haptic interface (figure 9.c). Thus, the 
force feedback will be produced by the virtual spring 
connecting the proxy with the HIP . 

 The method using the god-object , first proposed 
by Zilles and Salisbury  [14], represents an equivalent 
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approach to the proxy object, but here a priori knowledge 
of the surface topology is required. The god-object 
represents the virtual position of the HIP on the object’s 
surface, constrained by the planes forming this surface, 
while the HIP  is really commanded by the user toward the 
interior of that object. Lagrange multipliers are used to 
determine the actual location of the god-object during 
contact with a virtual object. This location is chosen to be 
the point that locally minimizes the distance between the 
god-object and the HIP, subject to the constraints that the 
god-object is on a particular surface. Once the god-object 
location is determined, simple impedance control 
techniques may be used to calculate the force to be   
displayed. A stiffness and damping can be applied 
between the HIP  and the god-object, representing local 
material properties [14]. 

4.4.2. Surface deformation 

 In most cases, grasping assumes that the virtual 
hand or gripper and grasped object are undeformable, 
because of real-time computation constrains. Usually, the 
grasped object should change its shape in response to the 
grasping force applied by the user, and regains it once 
released if the deformation is elastic, or remains deformed 
when the deformation is plastic. Therefore the need of 
interactive surface deformation methods that satisfy the 
real time requirements of realistic simulation, classified as 
vertex based and spline-based, depending on whether the 
object surface is represented by polygonal meshes or 
parametric equations. 

 Vertex-based Methods. In the 3D models based 
on polygon meshes, vertices and edges define each 
polygon. Both vertices and edges are shared by adjacent 
polygons, then, storing all the polygons forming the 
virtual object implies to store some vertices several times. 
To avoid the problem, some graphics languages save the 

mesh as a look-up table with pointers to edges and, 
subsequently to vertices. In systems based on this kind of 
3D geometrical model the user can interactively change 
the location of a vertex and its neighbors, according to 
some application-dependent deformation propagation law, 
in the corresponding look-up table, redefining the shape of 
polygons sharing it during the image rendering. When a 
virtual probe touch the surface of a 3D object the touched 
point goes inside the object pulling-in its neighbors 
following a given deformation propagation law. The 
surface of objects with a complex geometry, as body 
organs (liver, kidney, gall bladder), can be considered as 
an active surface. An active surface is an energy-
minimized polygonal mesh which, when deformed, will 
seek to return to a low-energy state. The energy 
minimization process is modeled with ideal springs 
attaching each mesh vertex with its neighbors and 
between the current and rest vertex positions. The object 
mesh look-up table will require supplementary 
information about the position of the considered vertex 
(home, current) and the external applied force. 

 Spline-based Methods . We can use functions of 
higher degree than linear functions describing a polygonal 
plane, to reduce the storage needs, and to provide 
increased surface smoothness. Parametric bicubic surfaces 
are described by three point coordinates x(s,t), y(s,t), z(s ,t) 
being a function of two parameters s and t. A particular 
point location on this surface depends on the particular 
parameters s and t values, where s, t∈[0,1]. Thus, the 
points (0,0), (0,1), (1,0) and (1,1) correspond to the end 
points of the parametric surface. Several such patches can 
be joined or splined smoothly at knot points by assuring 
continuity of the first and second derivatives. Depending 
on the control points that determine the values of the 
constant coefficients, we can have different kinds of 
splines: hermite splines, Bezier splines, and β-splines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Haptic rendering using a proxy object. (Adapted from Ruspini and Kolarov, [13]) 

Proxy = HIP 

Virtual object 
a) 

HIP 

Proxy 

b) 

Virtual spring: xk∆=F   

HIP 

Proxy 

c) 

∆x 



5. Conclusions 
In order to create the illusion of touching a 

virtual object in a user of a haptic device, one has to solve 
several issues: a geometrical model, a dynamical model 
associated to the geometrical one, the use of a collision 
detection technique, a real time reaction force calculation 
in response to the user’s manipulation, the stable and fast 
enough realistic visual and force rendering so that the user 
keeps immersed in the virtual world.  

As we count on limited human and financial 
resources, our project is limited to the study of the 
geometrical and dynamical models of deformable objects 
that conforms the heart of the haptic system, which in the 
future may lead to get resources to buy haptic devices that 
contribute to close the haptic loop that provides a surgical 
application in the laparoscopic or endoscopic modes or an 
industrial one for training or prototyping production. 
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